ADDITION OF DIETHYL 2-BROMOMESACONATE TO N-TOSYLPIPERIDONE ENAMINE¹

A.W.J.D. Dekkers². W.N. Speckamp³ and H.O. Huisman, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands (Received in UK 18 December 1970; accepted for publication 4 January 1971)

As potential precursors in the synthesis of functionalized l-azaadamantanes, the substituted 3 -aza-bicyclo- $[3,3,1]$ nonanes 1 are of considerable interest. A convenient preparation for the latter type of compound is the addition of 2-bromomethacrylates to enamine 2^4 . Recent work in the cyclohexanone series⁵ comprises both mechanistic aspects of the addition and conformational investigations about some adducts of the bicyclo- $[3,3,1]$ nonane type. The observation of novel mechanistic as well as conformational aspects in the piperidone series prompts us to disclose some of our results. As described earlier⁴, the addition of acrylate $\frac{3a}{2}$ ($\frac{7}{2}$, R=H) to enamine 2 occurred smoothly, yielding the ester $\underline{1a}$ (1, R₁=COOC₂H₅, R₂R₃=0). However, use of the precursor of $\underline{3a}$, i.e. ethyl $\beta_2\beta$ '-dibromoisobutyrate⁶ required 2.2 equiv. of $Et_{7}N$ for optimum results⁷, lesser amounts of amine resulting in the formation of α -substituted piperidones $^{\text{S}}$. Upon use of diester $\underline{3b}$, $(\underline{3}$, R=COOC₂H₅) experimental evidence indicated 3.3. equiv. of $Et_{7}N$ being necessary for synthetically useful results;under these conditions 41% of pure $4a$, m.p. 109-111°; NMR(CDC₁₃) 3.7-4.5 m (7 protons); 2.3-2.8 m (10 protons), 1.25 t (6 protons, COOCH₂CH₃); IR (CHC**l**₃) 1710, 1720 cm⁻¹ (C=O); was obtained. Use of lesser amounts of base gave a sharp drop in yield, and the recovery of N-Ts piperidone, while raising the $Et_{\overline{A}}N$ concentration leads to the formation of tarry byproducts. The observed difference between the addition of $\frac{3a}{2}$ and $\frac{3b}{2}$ is likely to find tts cause in a dual reaction path. In the reaction of $\frac{7a}{6}$ the Michael adduct I is formed in which the carbanion acts asa proton receptor, thereby accomplishing the necessary back formation of the intermediate enamine. In the general case, however, a preferred alkylation has to be assumed⁹ leading to the imminium form II. Conformational factors, e.g. the equilibrium between imminium and enamine forms in piperidone systems, or more likely a stabilization of the imminium form by intramolecular attractive forces between relatively electron rich oxygens of the \mathfrak{so}_2 groups¹⁰ and the imminium moiety could oppose the establishment of an equilibrium, making necessary the use of a tertiary amine.

Nīs

b:R=exo-COOH

 \overline{z}

 $\underline{\mathbf{9}}$.

∠н
Сн₂он

The relative stereochemistry of the ester group in the adduct 1a has been assigned on the basis of the following experimental and spectral evidence: NaBH reduction of 4a provided the diol-ester $4b$, m.p. 143-145°, NMR (CDCl₃) 61.25 t (3 H), the formation of which deserves some comment. The unusual course of this reduction implies the formation of a X-lactone 5 as an intermediate, which was confirmed by its isolation from the reduction of 4a with Na-bis(2-methoxyethoxy) aluminiumhydride, m.p. 200° (dec); IR (CHCl₃) 1775 and 1785 cm⁻¹ (0=C-0, Vlactone), 1720 cm⁻¹ (C=0); MMR (CDC1₃)¹⁷ $64.2-4.5$, $(\underline{CH}_2CH_3 + 0=0-0-\underline{CH})$, 4.03 and 3.75 m ($\overline{H}-\underline{CH}_2$), 3.33 m $(\underline{\text{CH}}-C=0-0)$ 2.75 m (CHCOOEt). Furthermore NaBH, reduction of \sum gave 4b as the sole product. This behaviour led to the assignment of a C_6 -exo-configuration for the ester. Oxidation of $4b$ (Ag₂CO_z/xylene) gave also 5^{12} .

On treatment of 4b with Na/EtOH, a 54% yield of 6a was obtained, m.p. 162-164°, IR (CHCl₃) 1750 cm⁻¹ (C=0); MMR (CDCl₃) 84.15 t (CH-0-C=0), 3.85-3.50 m (CH₂OH, CH₂N); 2.7 m (CHC=0). The original configuration of th C_7 ester is thus endo and the overall-stereochemistry of the ester $4a$ is most likely a boat-chair conformation¹³. This conclusion was further substantiated by the following series of experiments. Isomerization of 4a gave keto-diacid 7c, which was esterified (EtI/Ag₂0) to give the diester $7a$, **n.p.** 135 - 138,5°. IR (CHCl₃) 1725 cm^{$=$ 1} (C=0); 1160, 1340 cm⁻¹ (Ts) NMR (CDCl₃) 4.0-4.4, $(5H, 0CH_2 + NGB_2$ eq + $CH_7)$; 3.69 d, J=6 c /s (CH6); 2.3- $5, (9H).$

The low-field position of H_7 indicates a chair conformation for ring B^{13} .

NaBH_A reduction of $7c$ gave directly 6 -lactone acid $6b$ as the main product. The absence of any λ - lactone suggests, in view of the foregoing results, an endo-stereochemistry for the C_6 -ester group. This was also confirmed by LiAlH_A reduction of lactones <u>6a</u> and 6b, in which only the position of the C_6 -substituents differs. Triols $7d$ and 8 were obtained confirming the endostereochemistry for the C_6 -ester group.

In both series 4 and 7 the keto-ester was converted to the methylene esters <u>4e</u> and <u>7e</u> via S-ketalization and Ra-Ni treatment of the resulting thioketal. The ester 4e was finally converted (LiAlH₄) into diol $4f$, which was cyclized (HCl/AcOH) to laza-adamantane 9. The synthesis of alkylsubstituted aza-adamantane thus can be achieved via this route.

Additional NMR conformational studies on the adducts as well as the chemistry of some aza-adamantanes will be reported separately.

REFERENCES

- 1. Part 3 in the series "Bridged Heterocycles".
- 2. Part of the forthcoming thesis of A.W.J.D. Dekkers, University of Amsterdam.
- 3. To whom correspondence should be addressed
- 4. W.N. Speckamp, J. Dijkink and H.O. Huisman, J. Chem.Soc.(D) 196 (1970)
- 5. J.M. McEuen, R.P. Nelson and R.G. Lawton, J. Org. Chem, 35 , 690 (1970)
- 6. A.F. Ferris, 3. Org. Chem, 20 780 (1955)
- 7. Contrary to the earlier report⁴ in which the use of 1.0 eq of Et_zN was described, novel experimental results indicate the necessity of using 2.2 eq of $Et_{7}N$.
- 8. Structural proof was evidenced from spectral data: Mass: $M^+= 365 (6\%)$; M-Ts-210 (100%) IR (CHCl₃) 1710 cm⁻¹ (C-0) NMR (CDCl₃) 7.5 q(Ar<u>H</u>), 6.25 s (=CH) 5.65 s (C/H), 4.2 q(OCH_2); 2.2-3.9 m $(12H)$ 1.25 t (OCH_2CH_3) although the compound could only be obtained in an oily state.
- 9. For an extensive and well-documented review in the carbocyclic series see ref. 5
- 10. A. Risaliti, S. Fatutta and M. Forchiassin Tetrahedron 23 1451 (1967)
- 11. Double irrediationexperiments confirmed the assignment.
- 12. M. Fetizon, M. Gdfier, J.M. Louis, J. Chem.Soc. (D) 1118 (1969)
- 13. W.N. Speckamp, J. Dijkink, A.W.J.D. Dekkers and H.O. Huismen, Tetrahedron, in press.